冷启动是推荐系统中的必要且持久的问题。最先进的解决方案依赖于基于辅助信息的冷启动和现有用户/项目的培训混合模型。这种混合模型将损害现有用户/项目的性能,这可能使这些解决方案不适用于现实世界中的推荐系统,在这些系统中,必须保证现有用户/项目的体验。同时,已证明图形神经网络(GNN)可以有效地进行温暖(非冷淡)建议。但是,从未应用它们来处理用户项目两部分图中的冷启动问题。这是一项具有挑战性但有意义的任务,因为冷启动用户/项目没有链接。此外,设计合适的GNN来进行冷启动建议是不算气的,同时保持现有用户/项目的性能。为了弥合差距,我们提出了一个量身定制的基于GNN的框架(GPATCH),其中包含两个单独但相关的组件。首先,有效的GNN体系结构 - Gwarmer,旨在建模暖用户/物品。其次,我们通过进行冷启动建议来构建相关的补丁网络,以模拟和补丁Gwarmer。基准和大规模商业数据集的实验表明,GPATCH在为现有和冷启动的用户/项目提供建议方面非常出色。
translated by 谷歌翻译
最近已经设计了一些轻巧的卷积神经网络(CNN)模型,用于遥感对象检测(RSOD)。但是,他们中的大多数只是用可分离的卷积代替了香草卷积,这可能是由于很多精确损失而无法有效的,并且可能无法检测到方向的边界框(OBB)。同样,现有的OBB检测方法很难准确限制CNN预测的对象的形状。在本文中,我们提出了一个有效的面向轻质对象检测器(LO-DET)。具体而言,通道分离聚集(CSA)结构旨在简化可分开的卷积的复杂性,并开发了动态的接收场(DRF)机制,以通过自定义卷积内核及其感知范围来保持高精度,以保持高精度。网络复杂性。 CSA-DRF组件在保持高精度的同时优化了效率。然后,对角支撑约束头(DSC-Head)组件旨在检测OBB,并更准确,更稳定地限制其形状。公共数据集上的广泛实验表明,即使在嵌入式设备上,拟议的LO-DET也可以非常快地运行,具有检测方向对象的竞争精度。
translated by 谷歌翻译
图像检索系统可帮助用户实时浏览和搜索。随着云计算的兴起,检索任务通常外包到云服务器。但是,由于云服务器无法完全信任,因此云场景带来了隐私保护的艰巨挑战。为此,已经开发了基于图像加密的图像检索方案,首先是从密码图像中提取特征,然后根据这些功能构建检索模型。然而,大多数现有方法提取浅特征和设计微不足道的检索模型,从而导致密码图像的表现不足。在本文中,我们提出了一种名为“加密视觉变压器”(EVIT)的新型范式,该范式提高了密码图像的判别性表述能力。首先,为了捕获全面的统治信息,我们从密码图像中提取多级局部长度序列和全局Huffman代码频率特征,这些序列在JPEG压缩过程中由流密码加密。其次,我们将基于视觉变压器的检索模型设计为与多层次功能相结合,并提出了两种自适应数据增强方法,以提高检索模型的表示能力。我们的建议很容易通过自我监督的对比学习方式来适应无监督和监督的环境。广泛的实验表明,EVIT既可以实现出色的加密和检索性能,从而超过了当前方案,从而在大幅度的检索准确性方面优于当前方案,同时有效地保护图像隐私。代码可在\ url {https://github.com/onlinehuazai/evit}上公开获得。
translated by 谷歌翻译
This paper focuses on designing efficient models with low parameters and FLOPs for dense predictions. Even though CNN-based lightweight methods have achieved stunning results after years of research, trading-off model accuracy and constrained resources still need further improvements. This work rethinks the essential unity of efficient Inverted Residual Block in MobileNetv2 and effective Transformer in ViT, inductively abstracting a general concept of Meta-Mobile Block, and we argue that the specific instantiation is very important to model performance though sharing the same framework. Motivated by this phenomenon, we deduce a simple yet efficient modern \textbf{I}nverted \textbf{R}esidual \textbf{M}obile \textbf{B}lock (iRMB) for mobile applications, which absorbs CNN-like efficiency to model short-distance dependency and Transformer-like dynamic modeling capability to learn long-distance interactions. Furthermore, we design a ResNet-like 4-phase \textbf{E}fficient \textbf{MO}del (EMO) based only on a series of iRMBs for dense applications. Massive experiments on ImageNet-1K, COCO2017, and ADE20K benchmarks demonstrate the superiority of our EMO over state-of-the-art methods, \eg, our EMO-1M/2M/5M achieve 71.5, 75.1, and 78.4 Top-1 that surpass \textbf{SoTA} CNN-/Transformer-based models, while trading-off the model accuracy and efficiency well.
translated by 谷歌翻译
Supervised Question Answering systems (QA systems) rely on domain-specific human-labeled data for training. Unsupervised QA systems generate their own question-answer training pairs, typically using secondary knowledge sources to achieve this outcome. Our approach (called PIE-QG) uses Open Information Extraction (OpenIE) to generate synthetic training questions from paraphrased passages and uses the question-answer pairs as training data for a language model for a state-of-the-art QA system based on BERT. Triples in the form of <subject, predicate, object> are extracted from each passage, and questions are formed with subjects (or objects) and predicates while objects (or subjects) are considered as answers. Experimenting on five extractive QA datasets demonstrates that our technique achieves on-par performance with existing state-of-the-art QA systems with the benefit of being trained on an order of magnitude fewer documents and without any recourse to external reference data sources.
translated by 谷歌翻译
Transformer has achieved impressive successes for various computer vision tasks. However, most of existing studies require to pretrain the Transformer backbone on a large-scale labeled dataset (e.g., ImageNet) for achieving satisfactory performance, which is usually unavailable for medical images. Additionally, due to the gap between medical and natural images, the improvement generated by the ImageNet pretrained weights significantly degrades while transferring the weights to medical image processing tasks. In this paper, we propose Bootstrap Own Latent of Transformer (BOLT), a self-supervised learning approach specifically for medical image classification with the Transformer backbone. Our BOLT consists of two networks, namely online and target branches, for self-supervised representation learning. Concretely, the online network is trained to predict the target network representation of the same patch embedding tokens with a different perturbation. To maximally excavate the impact of Transformer from limited medical data, we propose an auxiliary difficulty ranking task. The Transformer is enforced to identify which branch (i.e., online/target) is processing the more difficult perturbed tokens. Overall, the Transformer endeavours itself to distill the transformation-invariant features from the perturbed tokens to simultaneously achieve difficulty measurement and maintain the consistency of self-supervised representations. The proposed BOLT is evaluated on three medical image processing tasks, i.e., skin lesion classification, knee fatigue fracture grading and diabetic retinopathy grading. The experimental results validate the superiority of our BOLT for medical image classification, compared to ImageNet pretrained weights and state-of-the-art self-supervised learning approaches.
translated by 谷歌翻译
Knowledge graph embedding (KGE), which maps entities and relations in a knowledge graph into continuous vector spaces, has achieved great success in predicting missing links in knowledge graphs. However, knowledge graphs often contain incomplete triples that are difficult to inductively infer by KGEs. To address this challenge, we resort to analogical inference and propose a novel and general self-supervised framework AnKGE to enhance KGE models with analogical inference capability. We propose an analogical object retriever that retrieves appropriate analogical objects from entity-level, relation-level, and triple-level. And in AnKGE, we train an analogy function for each level of analogical inference with the original element embedding from a well-trained KGE model as input, which outputs the analogical object embedding. In order to combine inductive inference capability from the original KGE model and analogical inference capability enhanced by AnKGE, we interpolate the analogy score with the base model score and introduce the adaptive weights in the score function for prediction. Through extensive experiments on FB15k-237 and WN18RR datasets, we show that AnKGE achieves competitive results on link prediction task and well performs analogical inference.
translated by 谷歌翻译
Digital engineering transformation is a crucial process for the engineering paradigm shifts in the fourth industrial revolution (4IR), and artificial intelligence (AI) is a critical enabling technology in digital engineering transformation. This article discusses the following research questions: What are the fundamental changes in the 4IR? More specifically, what are the fundamental changes in engineering? What is digital engineering? What are the main uncertainties there? What is trustworthy AI? Why is it important today? What are emerging engineering paradigm shifts in the 4IR? What is the relationship between the data-intensive paradigm and digital engineering transformation? What should we do for digitalization? From investigating the pattern of industrial revolutions, this article argues that ubiquitous machine intelligence (uMI) is the defining power brought by the 4IR. Digitalization is a condition to leverage ubiquitous machine intelligence. Digital engineering transformation towards Industry 4.0 has three essential building blocks: digitalization of engineering, leveraging ubiquitous machine intelligence, and building digital trust and security. The engineering design community at large is facing an excellent opportunity to bring the new capabilities of ubiquitous machine intelligence and trustworthy AI principles, as well as digital trust, together in various engineering systems design to ensure the trustworthiness of systems in Industry 4.0.
translated by 谷歌翻译
Surgical robot automation has attracted increasing research interest over the past decade, expecting its huge potential to benefit surgeons, nurses and patients. Recently, the learning paradigm of embodied AI has demonstrated promising ability to learn good control policies for various complex tasks, where embodied AI simulators play an essential role to facilitate relevant researchers. However, existing open-sourced simulators for surgical robot are still not sufficiently supporting human interactions through physical input devices, which further limits effective investigations on how human demonstrations would affect policy learning. In this paper, we study human-in-the-loop embodied intelligence with a new interactive simulation platform for surgical robot learning. Specifically, we establish our platform based on our previously released SurRoL simulator with several new features co-developed to allow high-quality human interaction via an input device. With these, we further propose to collect human demonstrations and imitate the action patterns to achieve more effective policy learning. We showcase the improvement of our simulation environment with the designed new features and tasks, and validate state-of-the-art reinforcement learning algorithms using the interactive environment. Promising results are obtained, with which we hope to pave the way for future research on surgical embodied intelligence. Our platform is released and will be continuously updated in the website: https://med-air.github.io/SurRoL/
translated by 谷歌翻译
Learning the underlying distribution of molecular graphs and generating high-fidelity samples is a fundamental research problem in drug discovery and material science. However, accurately modeling distribution and rapidly generating novel molecular graphs remain crucial and challenging goals. To accomplish these goals, we propose a novel Conditional Diffusion model based on discrete Graph Structures (CDGS) for molecular graph generation. Specifically, we construct a forward graph diffusion process on both graph structures and inherent features through stochastic differential equations (SDE) and derive discrete graph structures as the condition for reverse generative processes. We present a specialized hybrid graph noise prediction model that extracts the global context and the local node-edge dependency from intermediate graph states. We further utilize ordinary differential equation (ODE) solvers for efficient graph sampling, based on the semi-linear structure of the probability flow ODE. Experiments on diverse datasets validate the effectiveness of our framework. Particularly, the proposed method still generates high-quality molecular graphs in a limited number of steps.
translated by 谷歌翻译